Properties of the Real Numbers

The following are the properties of addition and multiplication if \(x \), \(y \), and \(z \) are real numbers:

<table>
<thead>
<tr>
<th>Properties</th>
<th>Addition</th>
<th>Multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutative</td>
<td>(x + y = y + x)</td>
<td>(x \cdot y = y \cdot x)</td>
</tr>
<tr>
<td>Associative</td>
<td>((x + y) + z = x + (y + z))</td>
<td>((x \cdot y) \cdot z = x \cdot (y \cdot z))</td>
</tr>
<tr>
<td>Identity</td>
<td>(x + 0 = x)</td>
<td>(x \cdot 1 = x)</td>
</tr>
<tr>
<td>Inverse</td>
<td>There is a unique number (-x) such that (x + (-x) = 0)</td>
<td>If (x \neq 0), there is a unique number (\frac{1}{x}) such that (x \cdot \frac{1}{x} = 1)</td>
</tr>
</tbody>
</table>

| Distributive | \(x \cdot (y + z) = x \cdot y + x \cdot z \) | Multiplication by zero |
| | | \(x \cdot 0 = 0 \) |

Commutative Property: When adding or multiplying two numbers, the order of the numbers can be reversed without changing the result.

- **Addition:** \(3 + 5 = 5 + 3 \) now check! \(3 + 5 = _\) and \(5 + 3 = _\)
- **Multiplication:** \(4 \cdot 7 = 7 \cdot 4 \) now check! \(4 \cdot 7 = _\) and \(7 \cdot 4 = _\)

Associative: When adding or multiplying three or more numbers, the result does not change if the numbers are grouped differently.

- **Addition:** \((1 + 2) + 3 = 1 + (2 + 3)\) now check! \((1 + 2) + 3 = (_\) + 3 = _\) and \(1 + (2 + 3) = 1 + (_) = _\)
- **Multiplication:** \((1 \cdot 2) \cdot 3 = 1 \cdot (2 \cdot 3)\) now check! \((1 \cdot 2) \cdot 3 = (_\) \cdot 3 = _\) and \(1 \cdot (2 \cdot 3) = 1 \cdot (_) = _\)

Identity: Addition and multiplication each have an identity element. This is a special number that does not change the value of other numbers when combined. For addition this number is zero, and for multiplication the number is one.

- **Addition:** \(5 + 0 = _\)
- **Multiplication:** \(5 \cdot 1 = _\)

Inverse: Addition and multiplication each have a unique inverse element for each real number (except zero for multiplication!) A number combined with its inverse gives the identity element.

- **Addition:** \(5 + (-5) = _\)
- **Multiplication:** \(5 \cdot \frac{1}{5} = _\)

Distributive: We say that multiplication distributes over addition of real numbers.

- \(2 \cdot (1 + 3) = 2 \cdot 1 + 2 \cdot 3 \) now check! \(2 \cdot (1 + 3) = 2 \cdot (_) = _\) and \(2 \cdot 1 + 2 \cdot 3 = _ + _ = _\)

Addition does not distribute over multiplication!

- \(2 + (1 \cdot 3) \neq (2 + 1) \cdot (2 + 3) \) because \(2 + (1 \cdot 3) = 6 \) and \((2 + 1) \cdot (2 + 3) = 15 \)

Multiplication by zero: Any real number multiplied by zero is equal to zero.

\(5 \cdot 0 = _\)