PROPOSED NEGATIVE DECLARATION

SANTA BARBARA CITY COLLEGE
LIBRARY EXPANSION

October 29, 1984

Negative Declaration

Santa Barbara City College (SBCC) has prepared this Negative Declaration (ND) pursuant to Sections 15070 and 15071 of the State Guidelines for the Implementation of the California Environmental Quality Act and City of Santa Barbara Environmental Guidelines. The document was prepared with the assistance of Steven Craig and Associates, environmental research consultants.

A Negative Declaration is a written document which describes the potential adverse impacts of a proposed project and explains why the anticipated impacts will not have significant effects on the physical environment. A number of planning measures were conceived to minimize the environmental impacts of the project; these measures, termed mitigation conditions, must be incorporated into the project design to comply with the intent of the California Environmental Quality Act. Because there are no significant environmental impacts which cannot be mitigated, it is not necessary to prepare an Environmental Impact Report (EIR) on the proposed project.

Project Applicant: Santa Barbara City College

Project Location: Santa Barbara City College, West Campus
721 Cliff Drive
Santa Barbara, California 93109

Assessor's Parcel Number:

Site Acres:

Proposed Project: Construction of a library to serve students attending Santa Barbara City College

City Zoning Designation: R-2 (Residential)

Coastal Zone Designation: Public Institution

Enclosure 4
Item 5.2-d

11/15/84
Project Characteristics and Objectives: The Library at Santa Barbara City College, originally built in 1965, was sized to serve a student body of about 2,500 students. Since then, the extensive increase in the use of technological tools in the delivery of instructional services has resulted in the scattering of various learning resource centers across the campus, due to a lack of space in the existing Library. The total space allotted to Learning Resources, including the Library, at SBCC has become inadequate to support the needs of a student clientele which has grown to approximately 10,000.

The proposed project will provide approximately 40,977 assignable square feet of space which will house, in one major building, the Campus Library (31,022 ASF) and the Learning Center (9,955 ASF). The Learning Center will contain space for the Learning Assistance Center, Reading/Study Skills Center, Writing Laboratory, Tutorial Center, and Computer Assisted Instruction Laboratory. The proposed project will provide all of these facilities in one structure which will be situated on the West Campus near the Garvin Theater Complex. The building location in relation to existing structures on the campus is displayed in Figure 1. A complete project description is provided in the Technical Appendix to the ND.

Environmental Setting: The proposed site for the Library/Learning Center complex is 1.5 acres in the northeastern section of the west campus property. The proposed site is 400 feet northwest of the ocean cliff, 300 feet from the existing Performing Arts building, and approximately 60 feet from the west end of the pedestrian bridge that links the east and west campuses. The elevation of the proposed site is approximately 70 feet. A proposed service road to the complex will connect the site to Loma Alta Drive. The road will rise 40 feet over its length of 360 feet, a grade of approximately 11%.

The west campus is an altered (or disturbed) series of marine terraces. Before grading in 1972, marine terraces occurred at approximately 50 and 90 feet. The marine terraces were separated by a small ravine at elevation 40 feet which drained easterly into the Honda Valley. The topography and soils have been altered in recent years because a 1972 grading operation cleared the surface of vegetation. Subsequently, erosion has led to soil loss. Where soil loss has been greatest, canyons, caverns, and crevices are conspicuous topographical features. Most of the eroded areas are north and northwest of the site.

The site of the proposed library expansion at Santa Barbara City College is located on a marine terrace traversed by a natural ravine to the north-east, and by a man-made roadcut along Loma Alta Drive, which forms the eastern boundary of the project site. Because of the unstable nature of the sandy substrate, erosion and soil slippage is a potential impact of the construction of the Library building and associated service road.
Coast live oak (*Quercus agrifolia*) and the non-native bluegum (*Eucalyptus globulus*) form a dense tree cover in the ravine to the north-east of the site. Coastal bluff scrub is confined to the south-facing slopes above the parking lot at the southern end of the project area although it is probable that this plant community was common throughout the project area prior to European settlement.

Initial Study: The areas analyzed in the initial study of the project site include:

- Fire Hazards and Emergency Access
- Short-term Construction Impacts
- Security and Personal Safety
- Botanical Resources
- Transportation, Parking and Circulation
- Geological Hazards
- Water Supply and Demand
- Biological Resources
- Aesthetics

Finding of No Significant Impact: It is the finding of the environmental consultant and Santa Barbara City College planning staff that the project does not have the potential to cause significant adverse environmental impacts. The rationale for this finding and design conditions which the applicant has agreed to incorporate into the project description are described in the following discussion.
Fire Hazards and Emergency Access

The proposed library is situated in the service area of the Santa Barbara City Fire Department. The site plan was reviewed for compliance with pertinent codes by Lesley-Anne Webster, Fire Inspector, City Bureau of Fire Prevention. Based on this review, it was determined that although several features of the proposed development would need to be modified slightly, as designed, the project complies with most exterior fire service restrictions and codes. The fire protection plan for the interior of the structure was not reviewed (and will not be reviewed until detailed plans are available).

The project provides dual access to the building vicinity: a service/fire access road will be constructed on the north side of the building; southern access would be provided either by upgrading the existing fire road south of the proposed structure or by upgrading a road which would connect the Garvin Theater parking lot to the library.

Recommended Conditions

(1) Dual access fire roads shall be designed to serve the development. These roads will comply with all slope and construction specifications required by the City of Santa Barbara Fire Department.

(2) Hydrant locations will be revised as necessary to comply with City of Santa Barbara ordinance requirements.

(3) If any access roads are gated, 'Knox Box' gate locks shall be installed to assure rapid ingress by City Fire Department personnel.

(4) Final development plans shall be submitted to the City of Santa Barbara Fire Department for review, modification (if necessary), and approval, prior to commencing construction.

Short-term Construction Impacts

The proposed building will be under construction for approximately two years. During this time, construction traffic and materials delivery will need to be made using either Loma Alta or Cliff Drive. Sight-distance problems, rapid vehicle speeds, and turning movement conflicts near the Garvin Theater entrance could increase accident potential if a substantial amount of construction traffic passes through the Garvin Theater access road intersection. The City of Santa Barbara planning staff objected to routing construction traffic along Cliff Drive. In addition, the potential for accidents involving students (pedestrians, bicyclists, and
automobile drivers) would substantially increase if construction traffic used the Garvin Theater access entrance. These potential impacts on the street system can be effectively mitigated by using the Loma Alta access road, by developing the project access road prior to initiating site preparation and grading, and by planning materials deliveries during non-peak traffic hours.

Grading and site preparation activities have the potential to result in periodic short-term disturbances to surrounding residential properties. The proposed grading program is relatively small scale, however; cut and fill would be balanced on site and therefore grading related truck traffic in the vicinity would not create a significant noise or traffic problem. During the relatively brief grading period (approximately two weeks), apartment residents north of the proposed library would be exposed to construction noise and dust. The dust (particulate) generation from the project can be mitigated using best available dust suppression technology.

Recommended Conditions

(1) The project access road shall be improved sufficiently to provide adequate construction access to the development site for construction personnel and equipment; this improvement shall be completed prior to beginning grading or site preparation work for the library.

(2) The marshalling yard for equipment and supplies shall be situated adjacent to the construction site.

(3) Materials deliveries shall only be made during non-peak traffic hours (that is, between 10:00 AM and 3:30 PM).

(4) An acceptable road striping plan shall be developed at the intersection of Loma Alta and the proposed construction and access road; the striping design shall be approved by the City of Santa Barbara Public Works Department. All restriping shall be completed prior to beginning any construction work on the site.

(5) The building contractor and City College Security shall provide necessary personnel and signing to assure that material deliveries are made safely and without increasing accident potential along Loma Alta.

(6) All grading and site preparation shall be done using best available dust suppression technology. To diminish the level of particulates emitted during clearing, site preparation, and grading activities, water trucks shall be used to moisten the grading area as necessary to minimize dust generation.
Security and Personal Safety

As designed, the proposed library would be situated in an area which is comparatively isolated, surrounded by open space, and relatively distant from parking areas. This poses some hazards to personal safety during evening hours (particularly for women). The possibility of abuse and attack can be minimized by providing well-lit paths to and from adjacent parking lots. Several additional mitigation measures were conceived to minimize personal injury risks.

Recommended Conditions

(1) Adequate low glare night-lighting shall be extended from the library to existing lighting along both the pedestrian bridge linking the library to the main campus and paths linking the Garvin Theater parking lot to the proposed building.

(2) Several emergency telephones connected to the Campus Security radio/telephone network shall be installed along these paths. These phones shall be signed and lit.

(3) The Campus Security and escort services shall make their personnel available as needed to enhance the personal safety of evening library users.

Botanical Resources

The botanical resources situated in the vicinity of the Library expansion site were evaluated by botanist Mary Hochberg. A copy of her completed technical report is included in the Technical Appendix to the EIR. The project site was surveyed on October 2 and 20, 1984 in order to observe existing plant species, determine the significance of the building site as a habitat, and to make recommendations for appropriate revegetation measures.

The entire terrace where the Library expansion will be constructed has been cleared of native vegetation in the past. Currently, the terrace is covered by a weedy mixture of Australian saltbush (*Atriplex semibaccata*), horseweed (*Conyza canadensis*), telegraph weed (*Heterotheca grandiflora*), wild radish (*Raphanus sativus*), and mustard (*Brassica sp.*), as well as non-native grasses such as wild oats (*Avena fatua*), ripgut (*Bromus diandrus*), red-brome (*Bromus rubens*), and others (see Table I). Monterey pine (*Pinus radiata*) saplings have been planted at intervals on the north-west
portion of the terrace, and an occasional native shrub has become re-established, including coastal sagebrush (*Artemisia californica*), Brewer's saltbush (*Atriplex lentiformis* subsp. *brewerii*), and coast goldenbush (*Haplopappus venetus*). Adjacent to the footbridge over Loma Alta drive, a small hillock topped by a sculpture has been landscaped with exotic succulents, cacti, and palms. The plants surrounding the sculpture create a barren, incongruous landscape which presents a stark and arid contrast to the adjacent coastal scrub and oak woodland.

Coast live oak (*Quercus agrifolia*) and the non-native blue gum (*Eucalyptus globulus*) form a dense tree cover in the ravine to the north-east of the site. Although the understory has been heavily disturbed by construction and by trampling, such native associates of southern coastal oak woodland as holly-leaf cherry (*Prunus ilicifolia*), redberry (*Rhamnus croce*), and poison oak (*Toxicodendron diversilobum*) are present. Periwinkle (*Vinca major*), an introduced evergreen vine, forms large patches in some areas, successfully competing with natives for space. Two coast live oaks also occur immediately below the footbridge over Loma Alta Drive.

Coastal bluff scrub is confined to the south-facing slopes above the parking lot at the southern end of the project area although it is probable that this plant community was common throughout the project area prior to European settlement. Brewer's saltbush (*Atriplex lentiformis* subsp. *brewerii*), dune buckwheat (*Eriogonum parvifolium*), coastal sagebrush (*Artemisia californica*), chaparral morning glory (*Calystegia macrostegia*), poison oak (*Toxicodendron diversilobum*), and coast goldenbush (*Haplopappus venetus*) are among the many natives on these slopes. In addition, a small patch of arroyo willow (*Salix lasiolepis*), Indian rush (*Juncus textilis*), and wild blackberry (*Rubus ursinus*) intermingle with the coastal bluff vegetation, suggesting the presence of a small seep. The plants observed in the construction site vicinity are listed in Table 1 of the Technical Appendix.

The primary impacts from the development of the library expansion would be the potential for increased erosion and conversion of native habitat. These impacts can be mitigated by carefully revegetating the construction area and associated access road cut slopes. The basic features of the revegetation program are discussed in the Technical Appendix.

In the current version of the plot plan, it appears that one eucalyptus tree along Loma Alta may be adversely impacted by construction of the project access road. This impact can be mitigated by slight modification of the road alignment and balanced root and top pruning.

Coast live oaks are protected in the coastal zone. To prevent damage to the oak stand in the project vicinity, a temporary construction fence set back about 15 feet from the dripline of trees adjacent to the building site should be installed. Other protection for the oak trees should be provided by avoiding depositing sediment around the base of existing trees and by developing irrigation systems which do not result in over-watering the existing trees.
Recommended Conditions

(1) A revegetation and erosion control landscaping plan shall be prepared to retard erosion on the coastal bluff in areas modified either directly or indirectly by construction activities. The plants selected for inclusion in this program shall be (to the extent feasible) native plants which have the capacity to reseed. Recommended plant species and their primary attributes (ability to reseed, color, foliage type, size, etc.) are displayed in Table 2 of the Technical Appendix.

(2) All specimen trees shall be preserved. This may require minor modification of the access road alignment. In instances where improvements will result in damage to the root systems of specimen trees, balanced root and top pruning shall be performed as required.

(3) A temporary construction boundary fence shall be installed along the northern perimeter of the library expansion site to prevent damage to the oak woodland in the Honda drainage. No construction spoils or sediment shall be deposited in or adjacent to this drainage.

Transportation, Parking, and Circulation

The proposed library (an existing on campus use) will be accessible from parking lots situated east and west of the proposed structure. No new parking facilities are planned. Because the library is not considered a major community research library (such as the UCSB facility), it is unlikely that the project would generate any traffic not presently on the street system within and around the College. In accord with the general campus plan, no vehicle access is provided within the central campus area; the college circulation design requires that access roads be placed on the periphery of the campus. The proposed library expansion conforms with this plan.

The staff of the City of Santa Barbara Public Works Department reviewed the proposed development for compliance with conventional engineering design (Sarah Craig, Transportation Technician; Dave Gorbet, Assistant Transportation Engineer, Ellen Hickey, Transportation Technician, personal communication, 1984). Their primary concerns included:

- the potential for illegal parking along the proposed access road and 'turn-around' traffic which may mistakenly turn into the access road;
- construction parking and material deliveries;
- striping plan designs for Loma Alta;
- pedestrian and bicycle safety.
Discussion

The potential for illegal parking along the proposed access road and mistaken entrance can be minimized by red striping the curbs along the access road and posting a sign which states "Service and Emergency Road Closed to the Public". Construction parking and materials deliveries concerns during construction are addressed above in the Short-term Construction Impacts discussion. Once the library is fully operational, no more than two truck deliveries a week are anticipated. The striping plan designs for Loma Alta would be designed in consultation with and to the satisfaction of the City Public Works Department Roads Division. The pedestrian and bicycle safety issue cannot be evaluated with available data because accident history statistics will not be released by the City Attorney (Sarah Craig, City of Santa Barbara Public Works Department, personal communication, October 1984). The Loma Alta pedestrian bridge provides adequate, safe pedestrian access which links the east and west campus complexes.

City planning staff had more general concerns regarding project specific and cumulative effects on the surrounding street system. Their concerns included:

- project induced increases in traffic along Cliff Drive;
- turning movement hazards at the Cliff Drive/Garvin Theater access road;
- cumulative effects on crowded parking conditions on campus;
- increases in traffic at the Shoreline Drive/Loma Alta intersection.

Discussion

In order to evaluate these potential problems, information was obtained about intersection level of service in the City College vicinity. The College area street system was not included within the scope of the Downtown Retail Expansion Traffic and Parking Study (JHK Associates, November 1981) or the FEIR on Downtown Cumulative Traffic (SB-22-82).

The most recent published baseline data on Traffic and Parking conditions in the City College vicinity is contained in the Waterfront Area Transportation Study (WATS). Most of the data evaluated in this report was assembled in 1977-78. According to the WATS study, both of the intersections in the proposed library vicinity (Shoreline/Loma Alta and Loma Alta/Cliff) operated at LOS A and would continue to operate at that level with cumulative development in the vicinity. Parking capacity on some of the City College lots was also described in the WATS study. The lower parking lots (below the proposed library) were used to complete capacity (100%) during summer weekday peak hours and to about 60% capacity during weekend peak periods. The Garvin Theater lot situated above the proposed library is used to capacity (100% occupancy) during the morning hours; later in the afternoon, occupancy declines considerably; evening parking use often approaches 30% of capacity (Don Seaver, City College Security,
The construction of the library near the Garvin Theater will probably change parking patterns very little. Because all lots in the vicinity are used to capacity during the AM hours (when most classes are in session), there is little opportunity for a shift in parking patterns. In addition, the library expansion would not generate new employees or additional students. Because the library is not considered a community research library (unlike the UCSB library), it is unlikely that new library-specific trip ends would be generated. Except on evenings when public events are held in the Garvin Theater complex, the parking areas near the theater can absorb a considerable increase in evening traffic.

Because the library would not generate new students or employees, trip generation is not expected to change once the library is completed. The assignment of trips to the street system may shift slightly, probably only during the evening hours. Some additional evening traffic would undoubtedly be attracted to the parking opportunities provided by the Garvin Theater lot. Without some evidence that traffic engineering studies are required (capacity problems, accident statistics, etc.), it is reasonable to conclude that the existing street system configuration can sustain the minor traffic pattern changes which would result from the library project. This conclusion was supported by consultations with CAL-TRANS. Cliff Drive is a State Highway (225) and, for this reason, discussions were held with CAL-TRANS staff (David Lomeli, Personal Communication, October 24, 1984). No significant capacity or intersection problems were identified by CAL-TRANS staff; no plans exist to upgrade or change the Garvin Theater access road/Cliff Drive intersections. Vehicle speeds and some sight-distance problems make left turn maneuvers from the access road on to Cliff Drive hazardous during peak hours. If necessary in the future, minor changes in permitted turning movements could be made at this intersection (if warranted by accident data or capacity problems).

Geological Assessment

The following assessment prepared by Environmental Analyst Scott Greene was based on existing literature concerning the project site. Principal sources consulted include the SBCC Master Plan EIR, the Seismic Safety Element of the County of Santa Barbara Comprehensive Plan, and soils reports on file with Pacific Materials Laboratory. The complete text of the geological evaluation is contained in the Negative Declaration Technical Appendix.

The west campus area is an altered (disturbed) series of marine terraces. Before grading in 1972, marine terraces occurred at approximately 60 and 90 feet. The marine terraces were separated by a small ravine at elevation 40 feet which drained easterly into the Honda Valley. The sedimentary deposits underlying the area are 60 to 110 feet of exposed Quaternary non-marine sediments termed the Older Alluvium. The base of these sediments is unknown. The age of the Older Alluvium is generally considered to be in excess of 10,000 years.
and may be as old as 100,000 years. (Santa Barbara City College Master Plan, pp. 62)

The topography and soils have been altered in recent years because a 1972 grading operation cleared the surface of vegetation. Subsequently, erosion has led to soil loss. Where soil loss has been greatest, canyons, caverns, and crevices are conspicuous topographical features. Most of the eroded areas are north and northwest of the site.

Soils on the west campus site are predominantly silty sands and fine sands with binder. The soils are nonexpansive. According to the Santa Barbara County Seismic Safety and Safety Element, potential for soil creep is low. The problem of compressible-collapsible soils is also given a low rating by the Element. Subsurface soil explorations to 40 feet have revealed no groundwater.

Like most places in California, Santa Barbara County has considerable potential for earthquakes. Since 1800, earthquakes causing major damage or death have struck in 1812, 1857, 1902, 1915, 1925, 1926, 1927, and 1941. There are two major earthquake faults that effect shaking in Santa Barbara County, the San Andreas fault and the Big Pine fault. These two faults are historically active (faults for which destructive earthquakes within historic time are reasonably well documented). The County Seismic Safety and Safety Element predicts earthquake recurrence intervals for these two faults. An earthquake of magnitude 7.0 on the Richter scale will occur every 40 years at a point on the San Andreas and every 400 years at a point on the Big Pine.

There are seven named faults within five miles of the proposed library site. Of the seven, two are identified as active in the County Seismic Safety Element: the Mesa and More Ranch faults. Three are labelled potentially active: the Carpinteria, Mission Ridge, and Red Mountain faults. The remaining two faults, the Montecito and the Lavigia, are considered inactive.

The Lavigia is the closest fault to the proposed library site. The fault cuts southeast along the northeast portion of the west campus and may join the Honda valley before trailing into the ocean. The fault trends northwest 4.5 miles between the west campus and Goleta. Estimated magnitude of a maximum credible earthquake is 5.1+.

Tsunamis (seismic sea waves) are not considered a threat to the west campus site. The elevations of the site are high enough to leave the site out of reach of the run up resulting from a tsunami.

Erosion has been a significant problem on the west campus site. Soil loss on the northern side of the property has created large crevices in the earth. Cavernous holes are separated by exposed ridges. The energy of flowing water and blowing wind will continue to result in soil loss unless appropriate revegetation and erosion control measures are taken. Recommended measures are described in the botanical analysis in the ND Technical Appendix.
The site's high susceptibility to erosion is attributable to the 1972 grading that disturbed the soil and vegetation. Removal of soil and rock material led to increased erosion in the underlying sedimentary layers and incision of gullies. Erosion continued as revegetation was either not accomplished or not maintained.

Recommended Conditions

(1) The structure shall be designed in consultation with a soils engineer; the foundation structural recommendations specified in the soils report shall be implemented during construction. The structure shall be designed to sustain impacts from the maximum credible earthquake which could impact the landform where the proposed library will be situated.

(2) Revegetation shall be done in accord with recommendations contained in the Botanical Assessment (see the ND Technical Appendix for specifications). The landscaping program for the development shall be designed with concern for existing active rates of erosion.

Water Supply and Demand

Water supplies for Santa Barbara City College are provided by the City of Santa Barbara's municipal water supply. The College is not supplied with water on an allotment system. Instead, water is drawn as required from four separate meters. In the year July 1, 1983 to June 30, 1984, total consumption by the school was 60.6 acre-feet.

The City of Santa Barbara's water-use is guided by a planning document adopted by the City Council in 1976. The document allocates 16,950 AFY (acre-feet per year) for the City's use. In the water year 1983-84, the City consumed 15,100 acre-feet. A supply balance of 1,850 acre-feet was left over, or 10.6% of the allowable supply.

In order to determine how much of the supply balance would be used by the proposed library, consumption figures for the Santa Barbara Public Library at 40 E. Anapamu were obtained. During the last 29 months, the Public Library used an average of 5.2 AFY for both interior use and irrigation. While the proposed City College library will be larger than the Public Library, water demand is estimated to be considerably less than 5.0 AFY. This estimate is primarily based on the condition that vegetation around the project will require minimal irrigation, and will not be water-intensive turf-type landscaping such as the lawns at the Public Library. In addition, best available water reducing toilet and plumbing fixture technology would be incorporated into the project.
The project is not intended to increase the student population. Therefore, water use should increase very little. New demand for water will only result from irrigation of landscaping around the proposed site. In order to minimize the demand for new water, drought-tolerant landscaping shall be planted. In addition, flow-restrictors shall be required for all hot-water heaters, and low-flush toilets shall be installed.

Recommended Conditions

1. Drought-tolerant, low water demand landscaping shall be incorporated into the landscape plan to the extent feasible. If irrigation is required, drip irrigation systems shall be installed. Turf planting shall not be used in the landscaping around the structure.

2. Flow restrictors and air assisted toilets (or other low water consumption toilets) shall be installed in all bathrooms.

Biological Resources

A biological resources survey was completed by John Storrer, consulting biologist. Mr. Storrer's report is included in the Technical Appendix to this Negative Declaration. The findings described in the biological assessment are summarized below.

Construction of the proposed building and associated roads would result in some loss of habitat for animals currently using the project site. Most mammals (including the seasonally resident coyotes) and birds now using the bluff for foraging would be forced to adapt both to short-term construction effects and a long-term reduction in foraging area. It is possible some animals would relocate to other habitats. Rodents and reptiles living on the bluff would be destroyed during grading and building activities. However, once construction is completed, rodents and reptiles would re-occupy the areas disturbed by construction activities.

The project would have little or no long term adverse effect on birds and mammals presently using the Honda drainage. Development of the library expansion on the graded coastal bluff is not considered a significant loss of wildlife habitat because the expansion would not impact the distribution or effect the persistence of regional bird and mammal populations. The proposed building site is properly classified as a habitat of poor quality and small size.

Noise and dust generated during construction may cause temporary abandonment of the oak and eucalyptus canopy and understory by birds and mammals presently using these resources for foraging, roosting, and nesting. The diverse vertebrate populations occurring in this woodland community would ultimately return to their original abundance following completion of the project. No long-term adverse biological
effects are anticipated from construction of the library expansion. No state or federally protected rare, threatened, or endangered species were observed or are likely to occur within the proposed library expansion site.
TECHNICAL APPENDIX
PROJECT DESCRIPTION

Library and Learning Resources Center

The Library at Santa Barbara City College, originally built in 1965, was sized to serve a student body of about 2,500 students. Since then, the extensive increase in the use of technological tools in the delivery of instructional services has resulted in the scattering of various learning resource centers across the campus, due to a lack of space in the existing Library. The total space allotted to Learning Resources, including the Library, at SBCC has become inadequate to support the needs of a student clientele which has grown to approximately 10,000.

The proposed project will provide approximately 40,977 assignable square feet of space which will house, in one major building, the Campus Library (31,022 ASF) and the Learning Center (9,955 ASF). The Learning Center will contain space for the Learning Assistance Center, Reading/Study Skills Center, Writing Laboratory, Tutorial Center, and Computer Assisted Instruction Laboratory. The proposed project will provide all of these facilities in one structure which will be situated on the West Campus near the Garvin Theater Complex. The building location in relation to existing structures on the campus is displayed in Figure 1.

Project Layout

The Library and Learning Resources Center would be divided into two parts: the Learning Resources building is proposed as a one story structure which would be joined to a two story library which would occupy the eastern half of the proposed building site. These separate structures would be connected by a common vestibule where certain shared facilities such as restrooms, telephone, lockers, etc., would be situated. The Learning Center, common vestibule, and main or entrance level of the Library would all be on one contiguous floor. The second (lower) floor level of the Library would be dedicated to the Library study, holding areas, and technical processing facilities.

The proposed configuration of a main upper level constituting approximately 2/3 of the building area with the remaining 1/3 area on a lower level takes maximum and optimum advantage of a naturally sloping site, while providing an ideal combination of required separation and necessary proximity for the several major programs housed in the facility.
Project Components

The proposed facility would be a complete media resource center for both printed and non-printed materials, with individualized learning assistance areas within these resources. The combined facility is designed to provide the following services:

1. Full service centralized library with a variety of student study areas and basic supply-support functions of selection, evaluation, distribution/retrieval, description and storage in support of student needs.

2. A community assessment center for students and prospective students.

3. A centralized learning assistance center staffed and equipped to individually aid students with supplemental support for classroom material.

4. A tutorial center providing one-on-one peer tutoring for students requiring additional help in learning their course material.

5. A computer assisted instruction center equipped with microcomputers for student use, and staffed with specially trained staff.

6. A computer software development and distribution center to provide facilities for faculty to develop computer software course support materials.

7. An advanced "cable cast" computer assisted instruction delivery system to produce instructional materials for the faculty and provide educational computer and television access to the community.

Ancillary Changes on Campus Resulting from Library Construction

The secondary effects of this project would include the following modifications to space allocations:

1. Space vacated in the Library (13,511 ASF) would be converted to house, in a central location, most of the Student Support Services which are now widely scattered about the campus. Affected entities would include Admissions and Records, Counseling, College Nurse, Student Activities, Campus Security, Financial Aids, EOPs, Placement, Career Center, and the office of the Vice President, Student Services.

2. One relocatable building (SC Bldg. #14, 3,171 ASF) would be converted to Facilities Maintenance and Operations use and the retirement of the Trailer Tr1 (Bldg. #33) and utility shed which now house this activity.
3. About 3,542 square feet of space in the Administration Building (Bldg. #1) would be remodeled to house Accounting, Personnel, Duplicating, and Planning and Research. These activities are now housed in three temporary buildings and a trailer which will all be retired. The building designations and numbers are T2 (#17), T4 (#19), T6 (#21), and Tr2 (#34).

4. Approximately 1,751 square feet in the Campus Center (Bldg. #2) would be converted to additional space for food services and the Hotel Restaurant Management program. This space would be used for storage, offices, and one classroom.

5. Space vacated in the Humanities Building (#7) by removal of the Learning Assistance Center, Reading/Study Skills Center, and Computer Assisted Instruction Center would permit expansion of Instructional Media and the Computer Science Laboratory.
PROJECT SPECIFICATIONS

CEQA requires evaluation of the physical effects of land use changes. In the following summary, the principal changes related to the construction site are described.

Building Construction

Site Preparation: The 32 existing small trees (32) within the construction and access right-of-way will be removed. A temporary fence will be placed around the construction area.

Access to Construction Area: Access to the building site will be restricted. Access for the building contractor will be via Cliff Drive to the northwest. [This specification will need to be revised in accord with proposed ND mitigation measures]. The contractor shall furnish and install a construction road to the project area from existing parking lot. [This specification will need to be revised in accord with proposed ND mitigation measures]. Access is to be limited to construction personnel and the construction equipment.

Grading: About 12 feet of existing sterile topsoil within limits of grading will be removed and spread uniformly into an adjacent disposal area 200' northwest of construction site. The entire construction area will be graded to within .75' of finish floor elevations. Temporary drainage swales will be constructed as required. Approximately 6,000 cubic yards of soil will be cut and 4,000 cubic yards of fill will be balanced on site. The excess excavation at disposal area to northwest. Excess material will be compacted in layers to bring adjacent areas closer to master plan grades. Existing manholes, valve boxes, etc. will be brought to grade.

Foundation: Reinforced concrete spread footings will be installed to depths recommended by a soils engineer.

Utility Services

Mechanical: Water, gas, sanitary sewer, and storm sewer services are available at the site. Local connections and branch will be installed as required.

Electrical: Services will be from primary, telephone, and signal manholes adjacent to the south side of building. These manholes are part of existing underground distribution system.

Site Work

Paving: The access road will be comprised of 2 1/2 inches of asphalt concrete surfacing with fog seal on 6" compacted subgrade. The road will be edged with 2"x4" wood header except for fire line/service road which should have 6" concrete and integral gutter.
Drainage: 2'x2'x3' concrete catch basins with cast iron frame and grate will be installed. The storm drain will be connected to the main. Several 8"x20' corrugated metal pipe culverts will be installed where walks cross drainage swale.

Storm Sewer: The storm sewer line will be 12 inches and larger, reinforced concrete sewer pipe conforming to ASTM C-76 Class III, 10 inches and smaller, extra strength concrete sewer pipe conforming to ASTM-C-14.
Botanical Assessment

Mary Hochberg
October 20, 1984

Introduction

The site of the proposed Library expansion at Santa Barbara City College is located on a marine terrace traversed by a natural ravine to the north-east, and by a man-made roadcut along Loma Alta Drive, which forms the eastern boundary of the project site. Because of the unstable nature of the sandy substrate, erosion and soil slippage is a potential impact of the construction of the Library building and associated service road.

The project site was visited and surveyed on foot on October 2 and 20, 1984 in order to observe existing plant species, determine the significance of the building site as a habitat, and to make recommendations for appropriate revegetation measures.

EXISTING CONDITIONS

The project area is bounded by the Garvin Theatre and associated parking areas, landscaping and "Turf, Groundcover and Rose Display" to the west and south-west. Cliff Drive, an apartment complex, and a steep ravine (Honda drainage) are present to the north. Loma Alta Drive is situated to the north-east and a parking lot is present to the south. An emergency fire access road cut through the coastal bluff links the proposed expansion site and this lower parking area.

The entire terrace where the Library expansion will be constructed has been cleared of native vegetation in the past. Currently, the terrace is covered by a weedy mixture of Australian saltbush (Atriplex semibaccata), horseweed (Conyza canadensis), telegraph weed (Heterotheca grandiflora), wild radish (Raphanus sativus), and mustard (Brassica sp.), as well as non-native grasses such as wild oats (Avena fatua), ripgut (Bromus diandrus), red-brome (Bromus rubens), and others (see Table I). Monterey pine (Pinus radiata) saplings have been planted at intervals on the north-west portion of the terrace, and an occasional native shrub has become re-established, including coastal sagebrush (Artemisia californica), Brewers salt bush (Atriplex lentiformis subsp. breweri), and coast goldenbush (Haplopappus venetus). Adjacent to the footbridge over Loma Alta drive, a small hillock topped by a sculpture has been landscaped with exotic succulents, cacti, and palms. The plants surrounding the sculpture creat a barren, incongruous landscape which presents a stark and arid contrast to the adjacent coastal scrub and oak woodland.
Coast live oak (*Quercus agrifolia*) and the non-native bluegum (*Eucalyptus globulus*) form a dense tree cover in the ravine to the north-east of the site. Although the understory has been heavily disturbed by construction and by trampling, such native associates of southern coastal oak woodland as holly-leaf cherry (*Prunus ilicifolia*), redberry (*Rhamnus croca*), and poison oak (*Toxicodendron diversilobum*) are present. Periwinkle (*Vinca major*), an introduced evergreen vine, forms large patches in some areas, successfully competing with natives for space. Two coast live oaks also occur immediately below the footbridge over Loma Alta Drive.

Coastal bluff scrub is confined to the south-facing slopes above the parking lot at the southern end of the project area although it is probable that this plant community was common throughout the project area prior to European settlement. Brewer's saltbush (*Atriplex lentiformis* subsp. *brewerii*), dune buckwheat (*Eriogonum parvifolium*), coastal sagebrush (*Artemisia californica*), chaparral morning glory (*Calystegia macrostegia*), poison oak (*Toxicodendron diversilobum*), and coast goldenbush (*Haplopappus venetus*) are among the many natives on these slopes. In addition, a small patch of arroyo willow (*Salix lasiolepis*), Indian rush (*Juncus textilis*), and wild blackberry (*Rubus ursinus*) intermingle with the coastal bluff vegetation, suggesting the presence of a small seep. The plants observed in the construction site vicinity are listed in Table 1.

IMPACTS AND MITIGATION

The primary impacts from the development of the library expansion would be the potential for increased erosion and conversion of native habitat. These impacts can be mitigated by carefully revegetating the construction area and associated access roads. The basic features of a revegetation program for this site are discussed below.

Revegetation

Plant Selection

The use of wisely selected plant species or cultivars coupled with proper cultural procedures will result in the successful establishment of plant cover which will inhibit erosion, even on the steepest slopes. Although many plants have erosion control capabilities on gentle slopes, those best suited for the protection of steep banks are woody perennials with deep, spreading root systems (Emery, 1967; Sunset Magazine, 1978).

Both surface foliar cover and effective soil binding are essential for permanent protection. Many deep-rooted California native plants are particularly desirable for erosion control since they are tolerant to the rainless summer months typical of southern California. Drought tolerance is advantageous not only in terms of water economy; continual irrigation may undermine slopes, causing them to slump and/or erode. Furthermore, many plants are susceptible to warm-season, water-borne diseases. Finally, native plants will flourish with less attention and be more in keeping with the natural coastal landscapes than most exotics. They may even reseed, insuring
the continued existence of suitable plant cover over the site over a long period of time.

In general, the selection of several plant species or cultivars in a landscape plan increases the range of adaptation to the conditions of a site before, during, and after it is revegetated. From a design standpoint, texture, growth habit, and plant foliage color should be considered carefully in order to maximize the visual value of the plantings. Plants recommended for revegetation are listed in Table 2. Since most of the plants in Table 2 have a medium texture due to their small, densely-placed leaves, these plants can be combined to create a pleasing landscape.

Planting

The best establishment (successful planting) results are usually obtained if plants are set out when their shoots are dormant. Planting in October or November prior to the onset of winter rains is preferred. This will enhance early root growth (which will enable the plant to absorb both moisture and nutrients) and will improve anchorage. Deep watering once a month during the first year will promote the development of a dense cover. Addition of soil amendments (compost, manure, etc.) is also desirable at planting time.

Soil Stabilization

There are many ways of stabilizing a slope while plants become established. Coverings of jute netting, plastic, chicken wire, etc. can be utilized prior to planting and then be cut open where plants are placed. Another alternative is the construction of individual planting holes—this process a berm around the plant serves as a watering basin, and soil amendments can be added at the time of planting. Mulches of wood chips or other substances can also be used around and between newly planted individuals for erosion and weed prevention. Or, a wildflower mixture can be hydrosed onto the hillside to provide seasonal color until the ground cover becomes continuous.

Impacts to Specimen Trees

In the current version of the plot plan, it appears that one eucalyptus tree along Loma Alta may be adversely impacted by construction of the project access road. This impact can be mitigated by slight modification of the road alignment and balanced root and top pruning.

Coast live oaks are protected in the coastal zone. To prevent damage to the oak stand in the project vicinity, a temporary construction fence set back about 15 feet from the dripline of trees adjacent to the building site should be installed. Other protection for the oak trees should be provided by avoiding depositing sediment around the base of existing trees and developing irrigation systems which do not result in over-watering the existing trees.
Bibliography

<table>
<thead>
<tr>
<th>Table I: Plants Present at Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = native</td>
</tr>
<tr>
<td>Trees</td>
</tr>
<tr>
<td>Cupressus sp.</td>
</tr>
<tr>
<td>Eucalyptus globulus</td>
</tr>
<tr>
<td>Pinus</td>
</tr>
<tr>
<td>Quercus Agrifolia</td>
</tr>
<tr>
<td>Washingtonia</td>
</tr>
<tr>
<td>** Shrubs**</td>
</tr>
<tr>
<td>Agave americana</td>
</tr>
<tr>
<td>Agave attenuata</td>
</tr>
<tr>
<td>Aloes arborescens</td>
</tr>
<tr>
<td>Artemisia californica</td>
</tr>
<tr>
<td>Atriplex lentiformis</td>
</tr>
<tr>
<td>Baccharis glutinosa</td>
</tr>
<tr>
<td>Baccharis pilularia</td>
</tr>
<tr>
<td>Brachycome fasciculatum</td>
</tr>
<tr>
<td>Brachycome parvifolium</td>
</tr>
<tr>
<td>Haplopappus venetus</td>
</tr>
<tr>
<td>Heteromeles arbutifolia</td>
</tr>
<tr>
<td>Lotus scoparius</td>
</tr>
<tr>
<td>Musa paradisiaca</td>
</tr>
<tr>
<td>Nicotiana glauca</td>
</tr>
<tr>
<td>Prunus ilicifolia</td>
</tr>
<tr>
<td>Rhamus crocea</td>
</tr>
<tr>
<td>Rhus integrifolia</td>
</tr>
<tr>
<td>Ricinus communis</td>
</tr>
<tr>
<td>Salix lasiolepis</td>
</tr>
<tr>
<td>Solanum douglasii</td>
</tr>
<tr>
<td>Toxicodendron diversilobum</td>
</tr>
<tr>
<td>Herbaceous Perennials</td>
</tr>
<tr>
<td>Aloe spp.</td>
</tr>
<tr>
<td>Ambrosia psilostachya</td>
</tr>
<tr>
<td>Atriplex semibaccata</td>
</tr>
<tr>
<td>Calyptraria macrostegia</td>
</tr>
<tr>
<td>subsp. cyclostegia</td>
</tr>
<tr>
<td>Carpobrotus edulis</td>
</tr>
<tr>
<td>Foeniculum vulgare</td>
</tr>
<tr>
<td>Hypochaeris radicata</td>
</tr>
<tr>
<td>Juniperus texana</td>
</tr>
<tr>
<td>Opuntia spp.</td>
</tr>
<tr>
<td>Osteospermum fruticosum</td>
</tr>
<tr>
<td>Oxalis pes-caprae</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Herbaceous Perennials, cont.</td>
</tr>
<tr>
<td>Rubus ursinus</td>
</tr>
<tr>
<td>Rumex crispus</td>
</tr>
<tr>
<td>Rumex pulcher</td>
</tr>
<tr>
<td>Vinea major</td>
</tr>
<tr>
<td>Xantheria</td>
</tr>
<tr>
<td>Annual and Perennial Grasses</td>
</tr>
<tr>
<td>Avena barbata</td>
</tr>
<tr>
<td>Avena fatua</td>
</tr>
<tr>
<td>Bromus</td>
</tr>
<tr>
<td>Cortaderia atacamensis</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
</tr>
<tr>
<td>Cyperus alternifolius</td>
</tr>
<tr>
<td>Elymus condensatus</td>
</tr>
<tr>
<td>Pennisetum clandestinum</td>
</tr>
<tr>
<td>Annual Forbs</td>
</tr>
<tr>
<td>Brassica nigra</td>
</tr>
<tr>
<td>Brassica rapa</td>
</tr>
<tr>
<td>Carduus pycnocephalus</td>
</tr>
<tr>
<td>Chenopodium murale</td>
</tr>
<tr>
<td>Conyza bonariensis</td>
</tr>
<tr>
<td>Conyza canadensis</td>
</tr>
<tr>
<td>Erodium cicutarium</td>
</tr>
<tr>
<td>Erodium moschatum</td>
</tr>
<tr>
<td>Gnaphalium chilense</td>
</tr>
<tr>
<td>Heterotheca grandiflora</td>
</tr>
<tr>
<td>Malva parviflora</td>
</tr>
<tr>
<td>Medicago polymorpha</td>
</tr>
<tr>
<td>Melilotus indica</td>
</tr>
<tr>
<td>Genus theria hookeri</td>
</tr>
<tr>
<td>Raphanus sativus</td>
</tr>
<tr>
<td>Saloala iberica</td>
</tr>
<tr>
<td>Spargula arvensis</td>
</tr>
</tbody>
</table>

Nomenclature follows Munz, 1974 and Smith, 1976.
<table>
<thead>
<tr>
<th>Scientific/Common Name</th>
<th>Height/Width</th>
<th>Foliage</th>
<th>Flowers</th>
<th>Comments</th>
<th>Hazards?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctostaphylos densiflora</td>
<td>2-4' tall, 4-8' wide</td>
<td>glossy, small 1/2-1' leaves</td>
<td>white to pinkish clusters</td>
<td>Several cultivar variation</td>
<td>No*</td>
</tr>
<tr>
<td>Little Sur Manzanita</td>
<td>1/2-2' tall, 4-10' wide</td>
<td>gray-green, 1' pointed leaves</td>
<td></td>
<td></td>
<td>No*</td>
</tr>
<tr>
<td>Arctostaphylos hookeri</td>
<td>2-4' tall, 4-10' wide</td>
<td>glossy, oval 3/4' leaves</td>
<td></td>
<td></td>
<td>No*</td>
</tr>
<tr>
<td>Atriocarpus lentiginosus subsp. bravoensis</td>
<td>3-8' tall, 6-8' wide</td>
<td>oval, gray</td>
<td></td>
<td></td>
<td>No*</td>
</tr>
<tr>
<td>Baccharis pilularis</td>
<td>1/2-2' tall, 3-6' wide</td>
<td>green, oval, toothed, 1-2'</td>
<td>not conspicuous</td>
<td>Excellent, prune once a year for best results</td>
<td>No</td>
</tr>
<tr>
<td>Ceanothus gloriosus var. spartocarpa</td>
<td>1-2' tall, 4-8' wide</td>
<td>small, holly-like 1' leaves</td>
<td>lavender-blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceanothus crassus subsp. horizontalis</td>
<td>2-5' tall, 5-10' wide</td>
<td>ovate, glossy bright green 1/2' leaves</td>
<td>blue, 1' clusters of small, fragrant blossoms</td>
<td>Several cultivar variation</td>
<td></td>
</tr>
<tr>
<td>Ceanothus niveus var. montanus</td>
<td>1-3' tall, 4-8' wide</td>
<td>green to gray narrow 1/2-1/3'</td>
<td>round, white to pinkish clusters</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Erigenia fumosa</td>
<td>1-3' tall, 3-4' wide</td>
<td>broad-ovate green above, woolly beneath, 1/2' leaves</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Erigenia graminea var. rubescens</td>
<td>1-2' tall, 1-3' wide</td>
<td>broad-ovate green above, woolly beneath, 1/2' leaves</td>
<td>round, deep rose flower clusters</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Fremontodendron</td>
<td>6-20' tall, 10' wide</td>
<td>dark green, scaly-like, 1-3' leaves</td>
<td>yellow, saucer-like flowers (Jul-Aug)</td>
<td>Spectacular in bloom</td>
<td>No</td>
</tr>
<tr>
<td>Flannel Bush, "Calif. Glory"</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Heteromeles arbutifolia var. torr</td>
<td>6-10' tall, 10' wide</td>
<td>thick, toothed glossy 2-4' leaves</td>
<td>clusters of small white flowers</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Height</td>
<td>Width</td>
<td>Leaf Shape</td>
<td>Flower Color</td>
<td>Additional Notes</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>-------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Mimulus longiflorus</td>
<td>2-3'</td>
<td>2'</td>
<td>narrow, close</td>
<td>creme to orange</td>
<td>hyperragon-like</td>
</tr>
<tr>
<td>Sticky Monkey Flower</td>
<td></td>
<td></td>
<td>sticky 1-3' leaves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus ilicifolia</td>
<td>6-20'</td>
<td>6-15'</td>
<td>glossy, toothed</td>
<td>narrow single petals</td>
<td>white flowers (Mar-May), red</td>
</tr>
<tr>
<td>Holly-leaf Cherry</td>
<td></td>
<td></td>
<td>folded 1-2' leaves</td>
<td>berries in summer</td>
<td></td>
</tr>
<tr>
<td>Lobelia cardinalis</td>
<td>3-20'</td>
<td>10-20'</td>
<td>leathery, toothed</td>
<td>dark, oval 1-2'</td>
<td>small white flowers (Feb-Mar), gummy</td>
</tr>
<tr>
<td>Lemonade Berry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>one-seeded fruit (Jun-Sep)</td>
</tr>
<tr>
<td>Bhus (Matsea) laricina</td>
<td>6-15'</td>
<td>15'</td>
<td>folded leaves</td>
<td>red marina, 2-3'</td>
<td></td>
</tr>
<tr>
<td>Laurel Sama</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvia leucophylla</td>
<td>2-6'</td>
<td>5-6'</td>
<td>prickly, aromatic</td>
<td>white petals</td>
<td>shored lavender clusters</td>
</tr>
<tr>
<td>Purple Sage</td>
<td></td>
<td></td>
<td>gray 1-3' leaves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaucharia californica</td>
<td>1-3'</td>
<td>3-5'</td>
<td>narrow, gray-green</td>
<td>striking, tubular</td>
<td>Fast growing, spread rapidly,</td>
</tr>
<tr>
<td>California Fuchsia</td>
<td></td>
<td></td>
<td>1' leaves</td>
<td>red flowers</td>
<td>flowers attract hummingbirds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Biological Assessment

John Storrer, Consulting Biologist
October 20, 1984

A field reconnaissance of the proposed development site and adjacent landforms was performed on 12 October, 1984 in order to evaluate existing conditions and habitats for wildlife. The survey program consisted of a systematic survey of the building site, road right-of-ways, and the adjacent wooded drainage east of the proposed building location. A general inventory of resident faunal communities presently inhabiting or likely to occur at the site was generated from the field survey, a review of pertinent literature, and museum specimen records. A primary consideration of the field investigation was to evaluate evidence for the seasonal occurrence of foxes which local residents had reported being present in the area.

EXISTING CONDITIONS

Habitats

The location for the building expansion is a graded coastal bluff which has been cleared of most native vegetation. Presently, the habitat is best described as introduced grassland. Most of the plant species on the proposed site are non-native weeds that are well adapted for invading disturbed soils. Several young Monterey Pines (Pinus radiata) have been planted at regular intervals within the development area.

Remnants of native vegetation are located along the southern and eastern perimeter of the graded bluff. The occurrence of Artemesia californica and Erigonum fasciculatum indicates that coastal sage scrub was the dominant plant community covering the bluff prior to grading. A moderately dense live oak woodland, dominated by coast live oak (Quercus agrifolia) and associated understory, is found on the west slope of the drainage just beyond the berm delimiting the eastern border of the clearing. These trees extend north to Cliff Drive and to the bridge southeast of the Library site, becoming much less dense along the lower reaches of the drainage. The east slope of the drainage is dominated by bluegum eucalyptus (Eucalyptus globulus) to the exclusion of most native plant species. Eucalyptus trees are also found interspersed with oaks on the lower end of the arroyo and immediately adjacent to both slopes defining the streambed.

Birds

Avian species diversity at the site is expected to be relatively high primarily due to the proximity of the oak and eucalyptus woodland. An American Kestrel, Loggerhead Shrike, and Black Phoebe
were observed foraging over the graded coastal bluff. Flocks of Mourning Doves, Yellow-rumped Warblers, and Western Meadowlarks were also also observed feeding in the meager grassland which covers the project site.

One or more White-crowned Sparrows, House Finches, Bewick's Wrens, Rufous-sided Towhees, and Plain Tit-mice were present in the oak woodland. All of these birds are commonly found in oak woodlands.

The widespread distribution of exotic winter-blooming plant species such as eucalyptus has provided a non-native habitat for many native and introduced birds. Hummingbirds, warblers, grosbeaks, orioles, and tanagers feed on tree nectar and abundant insects drawn to eucalyptus flowers. These trees also provide nest and roost sites for raptors, hummingbirds, and numerous songbirds. A Red-Shouldered Hawk, Great Horned Owl, and flocks of American Crows and Rock Doves were observed in the eucalyptus grove during the field survey.

Reptiles and Amphibians

Few reptile and amphibian species are expected to inhabit the project vicinity. Western fence lizards were present in piles of broken concrete and asphalt on the graded bluff. Side-blotched lizards, southern alligator lizards, gopher snakes, and common king snakes all probably exist within the project vicinity although they were not seen during the brief field survey. Few species commonly associated with oak woodlands are expected in the Honda drainage because the habitat is isolated within the urban boundary.

Mammals

The coastal bluff in the project area would not support a diverse range of mammalian species. Most rodents prefer some cover in the form of brush and trees which are required for harborage and foraging. Botta's Pocket Gopher commonly colonized disturbed soils. The abundance of this rodent within the library expansion area is well-documented by the number of fresh holes and burrows scattered over the graded bluff. However, with this exception, the overall diversity of rodent populations is low. This situation, coupled with the lack of suitable cover vegetation, the presence of pedestrian traffic, and the close proximity of buildings and roads precludes habitation of the vicinity by larger predatory mammals on a permanent basis. A notable exception to this general condition is the presence of coyotes.

Coyotes are very flexible in habitat preferences and requirements. They are remarkably tolerant of human disturbance and continue to thrive within their native ranges in areas of relatively dense human habitation. Inspection of the slope on the eastern perimeter of the clearing revealed evidence that coyotes may have denned among the small ravines caused by advanced soil erosion. A possible den site (a deep crvic at the bottom of a six foot deep gulley situated approximately sixty feet from the stands of live oak)
was identified based on the accumulation of coyote scats around the
gully entrance. Several scats were composed entirely of hair and bone
(the distinguishing attribute of coyote scat); a few smaller
droppings of like composition are probably attributed to coyote pups.
It is likely that these animals forage in the the deep drainage to
the east and doubtless used the streambed as a corridor for dispersal
to other areas. The den appeared to be abandoned but may have been
used as recently as last spring and summer.

Both the gray fox and introduced red fox are known to inhabit
sparsely developed areas within Santa Barbara (e.g., Hope Ranch) where
suitable habitat is available (Santa Barbara Museum of Natural
History, specimen records). It is improbable that either of these
types of foxes would inhabit the project vicinity. Foxes tend to be
more particular than coyotes in terms of habitat preference and human
presence. Foxes typically inhabit regions of relatively dense brush
or woodland, avoiding open grasslands and developed area. A plausible
explanation for the reported seasonal occurrence of foxes would be that
coyote pups (usually born in the spring) were observed in the vicinity
of the proposed library expansion. These pups could be mistaken for
foxes by individuals with little familiarity with local native
mammals.

Inspection of areas adjacent to the streambed indicated that this
corridor is frequented by domestic cats and raccoons. Opossums (a non-
native marsupial), striped skunks, and long-tailed weasels may also
use the drainage and bluff for periodic foraging.

IMPACTS AND MITIGATION RECOMMENDATIONS

Construction of the proposed building and associated roads would
result in some loss of habitat for animals currently using the project
site. Most mammals (including the seasonally resident coyotes) and
birds now using the bluff for foraging would be forced to adapt both
to short-term construction effects and a long-term reduction in
foraging area. It is possible some animals would relocate to other
areas. Rodents and reptiles living on the bluff would be destroyed
during grading and building activities. Once construction is
completed, rodents and reptiles would re-occupy the areas disturbed by
construction. The project would have little or no long term effect on
birds and mammals presently using the Honda drainage. Development of
the library expansion on the graded coastal bluff is not considered a
significant loss of wildlife habitat because these disturbances would
not impact regional populations. The library expansion building site
is properly classified as a habitat of poor quality and small size.

Noise and dust generated during construction may cause temporary
abandonment of the oak and eucalyptus canopy and understory by birds
and mammals presently using these resources for foraging, roosting,
and nesting.

The diversity and abundance of vertebrate populations in this
woodland community is expected to return to its original status
following completion of the project. No long-term adverse effects to
these animals is expected to result from construction of the library expansion. No state or federally protected rare, threatened, or endangered species were observed or are likely to occur within the proposed library expansion site.

Sources

Santa Barbara Museum of Natural History. Specimen Records

Consultation

Paul W. Collins, Associated Curator, Santa Barbara Museum of Natural History, Santa Barbara, California
Geological Assessment

Scott Greene, Environmental Analyst
October 15, 1984

The following assessment was based on existing literature concerning the project site. Principal sources consulted include the SBCC Master Plan EIR, the Seismic Safety Element of the County of Santa Barbara Comprehensive Plan, and soils reports on file with Pacific Materials Laboratory.

Environmental Setting

Overlooking the Pacific Ocean to the south and east, the west campus of Santa Barbara City College is 33.5 acres of primarily undeveloped coastal bluff. The site is bordered by a 60 foot-high sea cliff on the southeast, by the Honda valley on the northeast, by Cliff Drive to the northwest, and by residential units off of Oceano Avenue on the southwest. There is one earthquake fault in the immediate vicinity, the Laviña fault, which may run through the Honda valley. The fault is considered inactive.

The proposed site for the Library/Learning Center complex is 1.5 acres in the northeastern section of the west campus property. The proposed site is 400 feet northwest of the ocean cliff, 300 feet from the existing Performing Arts building, and approximately 60 feet from the west end of the pedestrian bridge that links the east and west campuses. The elevation of the proposed site is approximately 70 feet. A proposed service road to the complex will connect the site to Loma Alta Drive. The road will rise 40 feet over its length of 360 feet, a grade of approximately 11%.

The west campus is an altered (or disturbed) series of marine terraces. Before grading in 1972, marine terraces occurred at approximately 60 and 90 feet. The marine terraces were separated by a small ravine at elevation 40 feet which drained easterly into the Honda Valley. The sedimentary deposits underlying the area are 50 to 110 feet of exposed Quaternary non-marine sediments termed the Older Alluvium. The base of these sediments is unknown. The age of the Older Alluvium is generally considered to be in excess of 10,000 years and may be as old as 100,000 years. (Santa Barbara City College Master Plan, pp. 62)

The topography and soils have been altered in recent years because a 1972 grading operation cleared the surface of vegetation. Subsequently, erosion has led to soil loss. Where soil loss has been greatest, canyons, caverns, and crevices are conspicuous topographical features. Most of the eroded areas are north and northwest of the site.
Topography and Soils

The topography of the west campus is flat. The surface rises slightly to the west. Dirt paths with little or no vegetation scar the surface, inhibit plant growth, and leave the soil susceptible to erosion by wind and water. Northeast of the proposed library site, gullies and caverns have formed because of erosion. Some of these gullies are large enough to hide a person below the surface.

Soils on the west campus site are predominantly silty sands and fine sands with binder. The soils are nonexpansive. According to the Santa Barbara County Seismic Safety and Safety Element, potential for soil creep is low. The problem of compressible-collapsible soils is also given a low rating by the Element. Subsurface soil explorations to 40 feet have revealed no groundwater.

Testing of the soil in the project vicinity was done for two proposed projects, an apartment complex (which was never built) and the existing performing arts building. Copies of the soils engineering reports for these developments were consulted in preparing this report. In order to determine the proposed library's foundation design, it is recommended that new borings and soil tests be performed on the site.

In 1975, soil compaction tests were performed by Pacific Materials Laboratory. Four tests were done within 100 feet of the proposed library site, two near the southeast corner and two on the west side of the site.

Seismicity

Like most places in California, Santa Barbara County has considerable potential for earthquakes. Since 1800, earthquakes causing major damage or death have struck in 1812, 1857, 1902, 1915, 1925, 1926, 1927, and 1941.

There are two major earthquake faults that effect shaking in Santa Barbara County, the San Andreas fault and the Big Pine fault. These two faults are historically active (faults for which destructive earthquakes within historic time are reasonably well documented). The County Seismic Safety and Safety Element predicts earthquake recurrence intervals for these two faults. An earthquake of magnitude 7.0 on the Richter scale will occur every 40 years at a point on the San Andreas and every 400 years at a point on the Big Pine.

There are seven named faults within five miles of the proposed library site. Of the seven, two are identified as active in the County Seismic Safety Element: the Mesa and More Ranch faults. Three are labelled potentially active: the Carpinteria, Mission Ridge, and Red Mountain faults. The remaining two faults, the Montecito and the Lavigia, are considered inactive.
The Lavigia is the closest fault to the proposed library site. The fault cuts southeast along the northeast portion of the west campus and may join the Honda valley before trailing into the ocean. The fault trends northwest 4.5 miles between the west campus and Goleta. Estimated magnitude of a maximum credible earthquake is 5.1+.

Late Pliocene to Pleistocene sediments have been vertically displaced a minimum of 2100 feet, the north side of the fault having moved down. The age of the youngest rock unit displaced is 500,000 to 4,000,000 years. Near the west campus, the displacement is not as evident. The fault is not exposed in bedrock beneath old alluvium in the seafloor southeast of the mapped end of the fault (S.B. County Seismic Safety Element, pp. 85, 102). The Lavigia may have renewed faulting during the last 100,000 years, and even though the fault is labelled inactive, reactivation of the fault is possible at any time.

Perhaps more threatening to the west campus, however, because of size and location, are the Red Mountain and Mesa faults. An off-shore extension from Ventura, the Red Mountain fault passes three miles south of the west campus site and has a northerly dip. The Mesa fault is 3/4 mile northeast of the west campus and has a southwesterly dip.

Tsunamis (seismic sea waves) are not considered a threat to the west campus site. The elevations of the site are high enough to leave the site out of reach of the run up resulting from a tsunami.

According to the Geological Problems Index in the County Safety and Seismic Safety Element, the area is rated severe. Limitations of the ratings, however, suggest that the Geological Problems Index should not be the sole determinant of a project's susceptibility to geological problems. Seismic zoning is not justified because the present state of knowledge does not include an accuracy that would warrant such zoning. (County of Santa Barbara Seismic Safety Element, pp. 36)

Erosion and Flooding

Erosion has been a significant problem on the west campus site. Soil loss on the northern side of the property has created large crevices in the earth. Cavernous holes are separated by exposed ridges. The energy of flowing water and blowing wind will continue to result in soil loss unless appropriate revegetation and erosion control measures are taken. Recommended measures are described in the botanical analysis in the ND Technical Appendix.

The site's high susceptibility to erosion is attributable to the 1972 grading that disturbed the soil and vegetation. Removal of soil and rock material led to increased erosion in the underlying sedimentary layers and incisionment of gullies. Erosion continued as revegetation was either not accomplished or not maintained.
Flooding is not considered to be a threat to the west campus site. The relatively high elevation of the site and the surrounding drainage keeps large volumes of water away. No major creeks are in the immediate area.

Project Impacts

As is true of almost any building in Southern California, the project has potential to harm the public during a major earthquake. Earthquakes causing damage to property and harm to people are not uncommon in Santa Barbara County. The risks are known and are commonly accepted.

If all revegetation mitigation measures are incorporated into the project design, the project is expected to reduce erosion and soil loss. There will be increased water runoff from the site because the amount of permeable surface will be reduced by new buildings, and erosion may continue unchecked until appropriate landscaping can take root. Once new plantings have established themselves, and once the site is given better care and more maintenance, excessive erosion should be eliminated.

Mitigations

1. The structure shall be designed in consultation with a soils engineer; the foundation structural recommendations specified in the soils report shall be implemented during construction. The structure shall be designed to sustain impacts from the maximum credible earthquake which could impact the landform where the proposed library will be situated.

2. Revegetation shall be done in accord with recommendations contained in the Botanical Assessment (see the ND Technical Appendix for specifications). The landscaping program for the development shall be designed with concern for existing active rates of erosion.